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Abstract. Hydrodynamic and magnetohydrodynamic convective attractors in a plane horizontal layer 0 ≤
z ≤ 1 are investigated numerically. We consider Rayleigh-Bénard convection in Boussinesq approximation
assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period L
in the x and y directions. Computations have been performed for the Prandtl number P = 1 for L = 2

√
2

and Rayleigh numbers 0 < R ≤ 4000, and for L = 4, 0 < R ≤ 2000. Fifteen different types of hydrodynamic
attractors are found, including two types of steady states distinct from rolls, travelling waves, periodic and
quasiperiodic flows, and chaotic attractors of heteroclinic nature. Kinematic dynamo problem has been
solved for the computed convective attractors. Out of the 15 types of the observed attractors only 6 can act
as kinematic dynamos. Nonlinear magnetohydrodynamic regimes have been explored assuming as initial
conditions convective attractors capable of magnetic field generation, and a small seed magnetic field. After
initial exponential growth, in the saturated regime magnetic energy remains much smaller than the flow
kinetic energy. The final magnetohydrodynamic attractors are either quasiperiodic or chaotic.

PACS. 47.20.Ky Nonlinearity, bifurcation, and symmetry breaking – 47.20.Bp Buoyancy-driven
instabilities (e.g., Rayleigh-Benard) – 91.25.Cw Origins and models of the magnetic field; dynamo theories

1 Introduction

Thermal convection is a popular area of research. One rea-
son for this is richness and complexity of the system, where
different phenomena can be modelled in simulations or in-
vestigated employing a variety of mathematical analytical
methods (asymptotic, multiscale, equivariant bifurcation
theory, etc.). Experiments can be used to verify numer-
ical and theoretical findings. Another reason is physical
importance of the problem: convection occurs in nature in
many forms and over a wide range of scales. It is believed
that magnetic fields of planets and other astrophysical ob-
jects are sustained by convective flows of conducting fluid
in their interior. For the Earth the hypothesis is supported
by computations [1].

Different regimes of thermal convection in a layer in
the absence of magnetic field were studied by many au-
thors. For small Rayleigh numbers R (i.e., for small dif-
ferences in temperature on the horizontal boundaries) the
fluid is at rest and heat is transferred by thermal diffu-
sion only. When R exceeds the critical value (R = 657
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for the boundary conditions under consideration), fluid
motion sets in [2]. Without rotation it takes the form of
steady rolls [3]. In rotating layer standing or travelling
waves also emerge for Taylor and Prandtl (P ) numbers
in certain ranges [4]. In the non-rotating system stability
and bifurcations of convective rolls were studied in the
R − P − q space (where q is the wavenumber of the rolls)
for rigid [5,6] and stress-free boundaries [7,8]. Stability of
some secondary attractors was considered e.g. by Bolton
et al. [9], Clever and Busse [10] and Demircan and See-
hafer [11]. It was found both experimentally and theoret-
ically that convection in the form of squares or hexagons
can coexist with rolls in a parameter range, where only
rolls were previously known to be stable [12–14].

Though thermal convection in a layer was extensively
explored during the last several decades, detailed results
are only available in the vicinity of points of bifurcations,
or for the simplest attractors, e.g., convective rolls. To
the best of our knowledge, no systematic examination of
all time-dependent hydrodynamic attractors of convective
motions in a layer was undertaken so far in any parameter
region. Imposition of periodic boundary conditions with
an apriori fixed period for Rayleigh numbers significantly
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over the critical value is rather restrictive. But it allows
one to investigate attractors appearing ’out of blue’, e.g.
those created in saddle-node bifurcations, or invariant sets
(fixed points, orbits or more complex ones) becoming sta-
ble as the control parameter is increased, which can not
be found otherwise by commonly used local methods.

Magnetic field generation by convective motions in a
layer was studied much less. For the trivial steady state
(the fluid at rest) generation of magnetic field is, of course,
impossible. Without rotation convective rolls cannot gen-
erate magnetic field (by virtue of the Zeldovich [15] antidy-
namo theorem for planar flows), but they can in rotating
systems both in kinematic and non-linear regimes [16].
Dynamo was also found if shear was added to the sys-
tem [17]. Demircan and Seehafer [18] observed magnetic
field generation by convective flows of two other types
both in the presence or absence of rotation, but in the non-
linear regime without rotation the dynamo failed (the hy-
drodynamic system possesses multiple attractors, and the
final state is an attractor incapable of kinematic magnetic
field generation). However, in the majority of studies of
convection-driven dynamos either extreme parameter val-
ues were employed, for which simplified equations could
be obtained by asymptotic expansions (for instance, Jones
and Roberts [19] and Rotvig and Jones [20] considered the
large P limit), or turbulent convection was studied (see
Meneguzzi and Pouquet [21] and Cattaneo et al. [22]).

In this paper generation of magnetic field by convec-
tive flows is investigated in the simplest setup: We consider
fluid heated from below in a plane horizontal layer (it is
often regarded as representing a segment of a spherical
shell in the interior of a planet). The Boussinesq approxi-
mation is assumed, where variation of density is neglected
in the mass conservation equation so that the flow is re-
garded as incompressible. The layer is not rotating. We
assume stress-free perfectly conducting horizontal bound-
aries. Such boundary conditions are commonly used in
numerical studies because this seriously simplifies com-
putations and allows one to explore a large range of pa-
rameters, apparently not affecting qualitatively results of
simulations significantly. (The influence of boundary con-
ditions on convection in the absence of magnetic field and
on magnetic field generation by turbulent convection is
discussed in [7] and [23], respectively.)

Here, first we study numerically convective attractors.
Square space-periodic cells of two sizes L in the horizontal
layer 0 ≤ z ≤ 1 are considered. For L = 2

√
2 computations

have been performed for Rayleigh numbers 0 < R ≤ 4000,
and for L = 4 – for 0 < R ≤ 2000. In both cases Prandtl
number is P = 1. In the former case rolls are transformed
in Hopf bifurcations into a travelling wave and afterwards
into modulated travelling waves with several temporal fre-
quencies. In the latter case a more complex sequence of bi-
furcations takes place, in particular, there exist two types
of steady states distinct from rolls, different types of at-
tractors coexist for two windows of R, and chaotic be-
haviour of heteroclinic nature is observed in another win-
dow of R.

Second, we examine magnetic field generation in the
linear regime. For L = 2

√
2 magnetic field can be gener-

ated by the travelling wave and quasiperiodic flows, the
critical magnetic Prandtl number varying from 4.6 to 13.
For L = 4 out of 14 different types of observed attractors 5
can act as kinematic dynamos.

Third, we investigate non-linear regimes of convec-
tion in the presence of magnetic field (with the Lorentz
force taken into account). A convective attractor capable
of magnetic field generation and a small seed magnetic
field are assumed as initial conditions. After initial expo-
nential growth, in the saturated regime magnetic energy
remains much smaller on average than the flow kinetic en-
ergy. Magnetohydrodynamic (MHD) attractors are either
quasiperiodic or chaotic.

2 Statement of the problem

In the absence of magnetic field the system is governed by
the Navier-Stokes equation

∂v
∂t

= v × (∇× v) + P∆v + PRθez −∇p, (1.a)

the incompressibility condition

∇ · v = 0 (1.b)

and the heat transfer equation

∂θ

∂t
= −(v · ∇)θ + vz + ∆θ. (2)

Here v denotes the flow velocity, θ the difference between
the flow temperature and the linear temperature profile,
and R and P are dimensionless parameters, the Rayleigh
number and the Prandtl number, respectively. We assume
stress-free boundary conditions for the flow and fixed tem-
perature on horizontal boundaries:

∂vx

∂z
=

∂vy

∂z
= vz = 0, θ = 0 at z = 0, 1 (3)

and periodicity in horizontal directions:

v(x, y, z) = v(x + mL, y + nL, z),
θ(x, y, z) = θ(x + mL, y + nL, z) (4)

∀m, n ∈ Z.

Magnetic field satisfies the magnetic induction equation

∂b
∂t

= ∇× (v × b) + PP−1
m ∆b (5.a)

and the solenoidality condition

∇ · b = 0. (5.b)

Here Pm is the magnetic Prandtl number. We assume per-
fectly conducting horizontal boundaries:

∂bx

∂z
=

∂by

∂z
= bz = 0 at z = 0, 1 (6)
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and periodicity in horizontal directions with the same pe-
riod as that of the flow:

b(x, y, z) = b(x + mL, y + nL, z) ∀m, n ∈ Z. (7)

When kinematic magnetic field generation is studied, v(t)
is assumed to be a convective attractor. In non-linear
regimes magnetic field feedback via the Lorentz force is
taken into account, the governing equations being the
Navier-Stokes

∂v
∂t

= v×(∇×v)+P∆v+PRθez−∇p−b×(∇×b), (8)

the heat transfer (2) and the magnetic induction (5) equa-
tions.

Pseudospectral methods [24] are used to solve the hy-
drodynamic or MHD systems. A flow v is represented as
a Fourier series:

vm =
∑

n

vne
2πi
L (n1x+n2y)fm(πn3z),

where fm(z) = cos z for m = 1, 2 and f3(z) = sin z. Sim-
ilar series representations are used for temperature and
magnetic field.

Computations have been carried out for P = 1. For
L = 2

√
2 the Rayleigh number is varied in the range

0 < R ≤ 4000 and for L = 4, 0 < R ≤ 2000. The pe-
riod L = 2

√
2 corresponds to the horizontal wavenumber

k = π/
√

2 of the mode which is the first to become unsta-
ble for the boundary conditions (3) [2]. For L = 4 the most
unstable mode is aligned with the diagonal of the period-
icity cell. The kinematic dynamo problem (5) has been
solved for magnetic Prandtl numbers up to Pm = 100.
To resolve magnetic field accurately, much higher resolu-
tion is necessary than for velocity and temperature fields,
since magnetic field has finer structures. Consequently,
non-linear regimes of the convective MHD system have
been simulated for Pm not exceeding twice the critical
value. The resolution of 16×16×8 – 48 × 48 × 24 Fourier
harmonics is employed for simulation of hydrodynamic
convective attractors, and 32 × 32 × 16 − 64 × 64 × 32
for simulations involving magnetic field either in linear, or
non-linear regimes.

3 Symmetries

The symmetry group of the convective system (1), (2)
with the boundary conditions (3), (4) is D4 � T2 × Z2.
The 8-element group of symmetries of the square lattice,
D4, is comprised of rotations

s1 : (x, y, z) �→ (y,−x, z),

s2 : (x, y, z) �→ (−x,−y, z),

s3 : (x, y, z) �→ (−y, x, z),

Fig. 1. Bifurcation diagram of the detected attractors of the
system (1, 2) for L = 2

√
2 and 0 < R ≤ 4000. Labelling of at-

tractors is explained in Section 4.1 (see also Tab. 1). Horizontal
axis: Rayleigh number.

reflections

s4 : (x, y, z) �→ (x,−y, z),

s5 : (x, y, z) �→ (−x, y, z),

s6 : (x, y, z) �→ (y, x, z),

s7 : (x, y, z) �→ (−y,−x, z)

and the identity s0 = e. Elements of the groups Tx and
Ty of translations in the x and y, respectively, directions
are:

γx
α : (x, y, z) �→ (x + α, y, z)

and
γy

α : (x, y, z) �→ (x, y + α, z)

with 0 ≤ α < L (γx
L = γy

L = e). Txy denotes the group of
translations along the diagonal:

γxy
α : (x, y, z) �→ (x + α, y + α, z).

The group Z2 is generated by reflections about the hori-
zontal midplane:

r : (x, y, z) �→ (x, y, 1 − z).

If magnetic field is present, the group of symmetries of
the system also includes the symmetry reversing magnetic
field (v,b) → (v,−b).

Let A be an attractor of a dynamical system, invariant
under a symmetry g: g(A) = A. Two cases can be distin-
guished: either A is pointwise invariant, i.e. g(x) = x for
all points x ∈ A, or it is invariant only as a set, with
g(x) �= x for some x ∈ A. In what follows, only sym-
metries for which an attractor is pointwise invariant are
regarded as symmetries of the attractor.

4 Numerical results for L = 2
√

2

4.1 Convective attractors

Types of attractors of the system (1)–(4) found in com-
putations are shown on the bifurcation diagram (Fig. 1),
for further details see Table 1. Simulations have been car-
ried out for the Rayleigh number incremented step 100 ex-
cept in the vicinity of bifurcation points, which we identify
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Table 1. Attractors, detected in simulations for the hydrodynamic system (1)–(4) for P = 1, L = 2
√

2. The fourth column
presents the symmetry group for which an attractor is pointwise invariant, the fifth column generators of the group1; where a
symmetry group is a product of several subgroups, generators of the subgroups are separated by semicolons. The last column
presents time-averaged kinetic energy.

Label Type of the flow Interval of Group of Generators Ek

existence symmetries

S0 steady state R ≤ 657 D4 � T2 × Z2 s1, s4; γx; γy; r 0

Rolls steady state 658 ≤ R ≤ 1750 D2 � T × Z2 s4, s5; γy; γx
L/2r 0–174

TW periodic, f1 = 16.9 −: 17.1 1760 ≤ R ≤ 2330 D2 s5γ
y
L/2

,γx
L/2r 175–209

(travelling wave)

MTW2 quasiperiodic, 2340 ≤ R ≤ 3000 Z2 s5γ
xy
L/2r 210–297

f1 = 17.0 −: 20.5,

f2 = 12.1 −: 14.6,

(modulated travelling wave)

MTW3 quasiperiodic, 3100 ≤ R ≤ 4000 Z2 s5γ
xy
L/2r 310–446

f1 = 21.3 −: 25.1,

f2 = 14.9 −: 17.9,

f3 = 0.8 −: 1.4

(modulated travelling wave)

(a) (b) (c)

Fig. 2. Isolines (step 5) of vz on the horizontal midplane z = 1
2

for L = 2
√

2 and R = 2300, TW (a), R = 2800, MTW3 (b),
R = 3400, MTW4 (c). Solid lines indicate positive values, dashed lines – negative values. x – horizontal axis, y – vertical axis.

Fig. 3. A sample trajectory in the frame comoving with the
TW for L = 2

√
2 and R = 2300.

more accurately. Attractors are obtained by continuation
in parameter: computations are done with an initial con-
dition, which is a point of the attractor for a smaller R.
For each of R = 2000, 2400 and 3400 six runs have been

performed with random initial perturbations (i.e. pertur-
bations with random Fourier coefficients and an exponen-
tially decaying spectrum) with either small (∼10−6), or
large (∼100) initial kinetic and thermal energies, but no
other attractors have been found.

The trivial steady state (with the fluid at rest) be-
comes unstable at R = 657.5 and fluid motion sets in
in the form of steady rolls parallel to x or y coordinate
axes, in accordance with [3]. The rolls are stable up to
R = 1750, afterwards a travelling wave (TW) emerges in
a Hopf bifurcation. The instability (called even oscillatory
instability in Getling, 1998) results in a sinusoidal bend-
ing of the rolls. The pattern travels along the axis of a
roll (the y-axis for the flow shown in Fig. 2a). The flow
is time-periodic in a coordinate frame at rest and it is

1 For appropriately chosen location of the origin of the coor-
dinate system. New attractors can be obtained applying sym-
metries of the system; generators of their symmetry groups
should be modified accordingly.
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(a)

(b)

Fig. 4. Poincaré section of the horizontal midplane z = 1
2

for

the flow in the frame comoving with the TW for L = 2
√

2 and
R = 1780 (a) and R = 2300 (b). x–horizontal axis, y–vertical
axis.

steady in a frame moving with the speed of the pattern.
The flow is chaotic (see Figs. 3 and 4); the area of the
plane occupied by chaotic trajectories is large even close
to the point of bifurcation from rolls. As R growths, the
temporal frequency f1(R) at first decreases and then in-
creases, attaining the minimum near R = 2100. Clever and
Busse [10] found similar dependence of the TW frequency
on R for convection with rigid horizontal boundaries.

The TW is stable up to R = 2330. For R = 2340 the
attractor is a modulated travelling wave (MTW) which
has two basic frequencies (MTW2; see Tab. 1). The next
bifurcation at R = 3050 is again a Hopf one, in which
an MTW with three basic frequencies (MTW3) appears.
Spatial structure of MTW2 and MTW3 is more complex
than that of TW, but qualitatively the flows are similar
(cf. Figs. 2a–c). For modulated travelling waves basic fre-
quencies fi (i = 1, 2 for MTW2 and i = 1, 2, 3 for MTW3)
increase with R.

4.2 Magnetic field generation

Our computations show that all attractors of the system,
except the trivial steady state and unperturbed rolls, can
act as dynamos.

(a)

(b)

Fig. 5. The critical magnetic Prandtl numbers P c
m (a)

for the magnetic field generation in the linear regime by
attractors of the system (1), (2), and time averaged ki-
netic energy Ek (b) of the attractors for L = 2

√
2 and

1800 ≤ R ≤ 4000. Horizontal axis: Rayleigh number.

For MTW2 and MTW3 (5) is solved directly by nu-
merical integration in time (together with (1) and (2) to
obtain the convective attractor). If the flow v(t) in the
kinematic dynamo problem is a steady state or a TW, (5)
can be reduced to an eigenvalue problem.

Substituting a representation of a TW

v(x, y, z, t) = w(x + αxt, y + αyt, z)

moving with the velocity

α = (αx, αy, 0)

into (5) and changing variables

(x, y, z) → (x + αxt, y + αyt, z)

one finds

∂b
∂t

= ∇× (w × b) − (α · ∇)b + PP−1
m ∆b.

There exist growing magnetic fields, if the eigenvalue prob-
lem

λb = ∇× (w × b) − (α · ∇)b + PP−1
m ∆b (9)

has a solution, where the eigenvalue has a pos itive real
part. Dominant eigenvalues of (9) are found numerically
using the algorithm of Zheligovsky [25].
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(a) (b)

(c) (d)

Fig. 6. Isosurfaces at the 50% of the maximal energy density level of the dominant magnetic mode for L = 2
√

2, R = 2300 and
the critical P c

m = 5.33 (in the frame comoving with the TW). Plots step 1
8

of the temporal period T of the magnetic mode are

shown: t = 0 (a), t = T
8

(b), t = T
4

(c), t = 3
8
T (d). (The temporal period for the energy is T

2
).

Critical magnetic Prandtl numbers P c
m for the onset

of magnetic field generation are plotted in Figure 5a. Fig-
ure 5b shows time averaged kinetic energy Ek for the con-
vective attractors. (The critical magnetic Reynolds num-
bers can be evaluated as Rc

m = P c
mE

1/2

k .) Dependence of
P c

m on R is non-monotonous, the minimal P c
m = 4.62 is

attained at R = 2600 for MTW2. Two local maxima of
P c

m for MTW3 for R close to 3400 and 3900 appear due to
exchange of stability between different magnetic modes.

Magnetic field is generated near horizontal boundaries:
isosurfaces of magnetic energy density (Fig. 6) are flat
half-cigars spread along the boundaries. A similar concen-
tration of magnetic field near horizontal boundaries was
observed in convection with rotation by Matthews [16].
Cigar-like magnetic structures are often encountered in
dynamo problems for steady flows, which have stagnation
points with an one-dimensional unstable manifold; mag-
netic rope is aligned with the direction of the unstable
manifold. Classical numerical examples include magnetic
structures generated by ABC flows in the space-periodic
geometry [26,27], by Beltrami flows in a sphere [28] and
by hexagonal convective cell patterns in a layer [29].

A direct analogy of the structure of magnetic modes
satisfying (9) with analytical magnetic rope solutions of
Moffatt [30] and Galloway and Zheligovsky [31] could be
expected for cigars associated with zeroes of w−α. How-
ever, as we have checked, for the attracting TW flows ap-
pearing in the present convective system the field w − α
has no stagnation points.

Isosurfaces of small values of the kinetic energy density
|w|2 are plotted in Figure 7a. Cigars in Figure 6 are lo-

cated near zeroes of w on the boundaries, no strong mag-
netic field is generated near zeroes inside the box. The
flow velocity on the lower horizontal boundary is plotted
in Figure 7b, its structure is inherited from the former
rolls: the y-component of the velocity is small, two direct
lines of zeroes of rolls modify into S-shaped lines of points
where the velocity is small (the vertical component van-
ishes by virtue of (3)). The cigars and the flow are aligned
along the x-axis, magnetic field is maximal in the middle
of the cigars halfway between zeroes of the flow.

In the non-linear regime computations have been per-
formed for the following sets of parameters: R = 2000,
Pm = 8, 10; R = 2300, Pm = 8, 10; R = 2400, Pm =
6, 8, 10; R = 3400, Pm = 6, 8, 10; R = 4000, Pm = 8, 10.
Initially magnetic energy grows exponentially, but in the
saturated regime it remains smaller than kinetic energy.
Attractors are quasi-periodic with several main frequen-
cies, or chaotic (see a typical temporal behaviour of kinetic
and magnetic energies in Figs. 8 and 9).

We have not performed computations for higher Pm,
because this requires higher resolution. Most computa-
tions have been done with 48×48×24 Fourier harmonics;
for this resolution magnetic energy spectrum decreases at
least by two orders of magnitude. Some computations have
been checked against runs with the resolution 64×64×32
Fourier harmonics, results remaining unaffected. The flow
and temperature energy spectra decrease by about eight
orders of magnitude: because of the fine structure of mag-
netic field more Fourier harmonics are necessary to resolve
it adequately.
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(a) (b)

Fig. 7. Isosurfaces at the 1% of the maximal energy density level of the flow (a) and the flow velocity on the lower boundary
z = 0 (b, x – horizontal axis, y – vertical axis) (in the frame comoving with the TW) for L = 2

√
2 and R = 2300.

Table 2. Attractors, detected in simulations for the hydrodynamic system (1)–(4) for P = 1 and L = 4. The fourth column
presents the symmetry group for which an attractor is pointwise invariant, the fifth column generators of the group; where a
symmetry group is a product of several subgroups, generators of the subgroups are separated by semicolons. The last column
presents time-averaged kinetic energy.

Label Type of the flow Interval of Group of Generators Ek

existence symmetries

S0 steady state R ≤ 657 D4 � T2 × Z2 s1, s4; γx; γy; r 0

SR steady state 658 ≤ R ≤ 767 D2 � T× Z2 s6, s7; γxy; γx
L/2r 0–14.3

S1 steady state 768 ≤ R ≤ 783 D2 s6, s7γ
xy
L/2

r 7.8–15.3

P1 periodic, f1
1 = 0.94 R = 784 Z2 s6 9.1

Q1 quasiperiodic, R = 785 1 e 8.7

f1
1 , f1

2 = 0.12

C1 chaotic 786 ≤ R ≤ 812 1 e 8.1–12.6

P2 periodic, 813 ≤ R ≤ 815.5 1 e 9.5–9.8

f2
1 = 0.0035 −: 0.01

LR steady state 816 ≤ R ≤ 897 D2 � T× Z2 s4, s5; γy ;γx
L/2r 9–22

TW periodic, f3
1 = 4.9 −: 5.8 898 ≤ R ≤ 1030 D2 s5γ

y
L/2, γx

L/2r 23–38

(travelling wave)

MTW2 quasiperiodic, 1040 ≤ R ≤ 1580 Z2 s5γ
xy
L/2r 39–112

f3
1 = 5.8 −: 9.1,

f3
2 = 4.7 −: 7.9,

(modulated travelling wave)

C2 chaotic 1590 ≤ R ≤ 1670 Z2 s5γ
xy
L/2r 113–123

P4 periodic, f4
1 = 6.9 −: 11.3 1200 ≤ R ≤ 1930 D2 s2, s5γ

xy
L/2r 63–167

Q2 quasiperiodic, 1940 ≤ R ≤ 2000 D2 s2, s5γ
xy
L/2r 168–177

f4
1 = 11.3 −: 11.6,

f4
2 = 4.4 −: 4.6

S2 steady state 951 ≤ R ≤ 1081 D4 s1, s4 27–45

5 Numerical results for L = 4

5.1 Convective attractors

For L = 4 and 0 < R ≤ 2000 a more complex sequence of
bifurcations has been found in computations than that for
L = 2

√
2, discussed in the previous Section (see Fig. 10

and Tab. 2). The Rayleigh number has been increased step
100 except in the vicinity of bifurcation points. Intervals
of existence of attractors are determined by continuation

in parameter. Six runs with random initial conditions have
been performed for each R = 1000, 1500 and 2000. Unlike
for L = 2

√
2, for R = 1000 a new attractor – a steady

state S2 – has been discovered in a run with the new initial
conditions.

The trivial steady state becomes unstable at R = 657.5
and fluid motion sets in in the form of steady rolls of the
spatial period 2

√
2, parallel to a diagonal of the period-

icity square. These rolls are referred to as “small rolls”
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(a)

(b)

Fig. 8. Kinetic (a) and magnetic (b) energy (vertical axis) as
functions of time (horizontal axis) for L = 2

√
2, R = 2300 and

Pm = 8.

(a)

(b)

Fig. 9. Kinetic (a) and magnetic (b) energy (vertical axis) as
functions of time (horizontal axis) for L = 2

√
2, R = 3400 and

Pm = 8.

(SR) in Tab. 2 in contrast to “large rolls” (LR) of the
period L = 4 parallel to coordinate axes. Small rolls are
stable up to R = 767, afterwards a new steady state S1

emerges in a supercritical bifurcation (see Fig. 11a). The
state is called “Asymmetric Squares 2” in the terminology
of Proctor and Matthews [32]2. S1 becomes unstable in a

2 Proctor and Matthews [32] presented all symmetry types
of steady states appearing as a result of the

√
2 : 1 steady

Fig. 10. Bifurcation diagram of the detected attractors of the
system (1), (2) for L = 4 and 0 < R ≤ 2000. Labelling of
attractors is explained in Section 5.1 (see also Tab. 2).

(a)

(b)

Fig. 11. Isolines (step 1) of vz on the horizontal midplane
z = 1

2
for L = 4: R = 780, steady state S1 (a) and R = 1000,

steady state S2 (b). Solid lines indicate positive values, dashed
lines – negative values. x–horizontal axis, y–vertical axis.

Hopf bifurcation and a flow with one temporal frequency
appears (see Fig. 12a). The next bifurcation is also a Hopf

state mode interaction for non-Boussinesq convection. No sim-
ilar analysis has been carried out for Boussinesq convection,
which has in addition the reflection symmetry and thus ad-
mits steady states of other types, e.g. with A = B, C = D = 0
in the notation ibid.
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(a)

(b)

Fig. 12. Fourier coefficient v1
0,1,1 (vertical axis) as a function of

time (horizontal axis) for L = 4: R = 784, P1 (a) and R = 785,
Q1 (b). Real part – solid line, imaginary – dotted line.

one, resulting in emergence of the second frequency (see
Fig. 12b).

For R in the interval 786 ≤ R ≤ 812, the flow ex-
hibits chaotic behaviour of heteroclinic nature with differ-
ent types of underlying heteroclinic connections in differ-
ent subintervals of the interval. Near its lower end a typical
temporal behaviour of a trajectory consists of jumps be-
tween (unstable) steady states of the type S1: plateaux
of quasiconstant values of the flow energy (Fig. 13a) and
the displayed Fourier coefficient (Fig. 13b) correspond to
time intervals when the trajectory is close to these steady
states. (By steady states of the S1 (SS, SR, LR) type we
call steady states, which can be mapped to S1 (SS, SR,
LR, respectively) by the symmetries of the system). As the
Rayleigh number is increased, the time a trajectory spends
near S1 diminishes and the behaviour becomes chaotic and
irregular (Fig. 14).

At the upper end of the interval of R, steady states
(manifested by plateaux in Fig. 15) distinct from S1 type
ones are visited by a sample trajectory. When Ek ≈ 8
(e.g. 510 < t < 540 and 620 < t < 640), the trajectory
is near steady states of the large rolls (LR) type; when
Ek ≈ 16 (e.g. 545 < t < 555 and 600 < t < 620), a
solution is close to the steady state of the type SS. SS
(small squares) can be regarded as a sum of two small
rolls of equal amplitude aligned along different diagonals
of the periodicity cell. They are discussed in the Appendix.
When the flow energy reaches the maxima Ek ≈ 22 (t ≈
570 and t ≈ 770) the trajectory is close to the SR type
flow, and for t ≈ 590 and 750 < t < 780, Ek ≈ 19.5, it
visits a steady state of another type S3, which apparently
bifurcates from SR. The time spent near steady states
decreases with R decreasing from 812 to 800. However, in

(a)

(b)

Fig. 13. The energy of the flow (a) and Fourier coefficients (b):
Rev2

0,1,1, Imv2
0,1,1, Rev1

1,1,1 and Imv1
1,1,1 (solid, dotted, dashed

and dot-dashed lines, respectively) - vertical axis, as functions
of time (horizontal axis) for L = 4 and R = 790.

(a)

(b)

Fig. 14. Same, as in Figure 13, but for R = 800.

Figure 14 (R = 800) we can still identify time moments
when solution is close to LR (e.g. t ≈ 580) and SS (e.g.
t ≈ 585).

Apparently, for R close to 786, the attractor is located
near a heteroclinic cycle connecting the S1 type flows. The
cycle may exist only for an isolated value of R. For R close
to 812 the attractor resides near a heteroclinic network
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(a)

(b)

Fig. 15. Same, as in Figure 13, but for R = 812.

connecting the LR, SR, SS and S3 types solutions. (A part
of the network connecting LR’s and SS’s is constructed in
the Appendix). In the middle of the interval none of the
heteroclinic structures are attracting, a trajectory is close
to steady states for short times. It seems impossible to
indicate a precise boundary between the three patterns
of behaviour on the interval of R under discussion; ap-
parently each pattern continuously evolves into the next
one.

For 813 ≤ R ≤ 815.5 (see Fig. 16) the behaviour is
periodic: a periodic orbit emerges apparently from a het-
eroclinic cycle, which is a subset of a heteroclinic network
connecting steady states of the LR and SS types (see Ap-
pendix). Denote by LRα = γx

αLR0 rolls obtained by the
shift by α in the x direction and by SSα = γxy

α SS0 small
squares obtained by the shifts by α in x and y directions;
note SSL/2 =SS0. The heteroclinic cycle connects steady
states in the following order: LR0 → SS0 → LRL/4 →
SSL/4 → LRL/2 → SS0 → LR3L/4 →SSL/4 → LR0 → ...
As always for cycles created from a heteroclinic or homo-
clinic connection, its temporal period decreases when the
distance (in the parameter space) to the point of bifurca-
tion increases.

For 816 ≤ R ≤ 897 the attractors are the large
rolls (initially unstable when they bifurcate from S0 at
R = 761). At R = 897 the LR become unstable in a Hopf
bifurcation and a TW emerges, similarly to the bifurca-
tion of rolls for L = 2

√
2 when those become unstable

(Fig. 17a). The next bifurcation at R = 1035 is also simi-
lar to the L = 2

√
2 case – it is a Hopf bifurcation resulting

in emergence of MTW2. At R = 1585 the behaviour be-
comes chaotic, the attractor C2 persists up to R = 1670.

(a)

(b)

Fig. 16. Same, as in Figure 13, but for R = 813.

For higher R trajectories are attracted by a time-periodic
orbit P4.

The orbit P4 has been traced down to R = 1200; for
smaller R it is unstable and trajectories initially close to
P4 are attracted by MTW2. For R < 1200 computations
were performed with the s2 symmetry imposed and with
P4 as initial condition. The computations reveal that P4

appears at R = 1050 in a pitchfork bifurcation from a
periodic orbit P3 (see Fig. 10), which is always unstable.
The P3 symmetry group, Z3

2, is generated by s2, s5γ
y
L/2

and γx
L/2r. It bifurcates from LR simultaneously with the

TW. At the point of bifurcation the symmetries s5γ
y
L/2

and γx
L/2r act trivially on the center eigenspace of (1)–(2)

linearised in the vicinity of LR (this was checked numer-
ically). Thus, the action of the LR symmetry group on
the center eigenspace is isomorphic to O(2). Golubitsky
et al. [34] have studied analytically a Hopf bifurcation
with the O(2) symmetry group. They found that standing
and rotating (or, in the present context, travelling) waves
bifurcate simultaneously; if both branches are supercrit-
ical, one of them is stable. Our numerical results agree
with their theory. The difference between the symmetries
of TW and P3 (standing wave) is illustrated by Figure 18.
Note, that for TW imaginary part of the coefficient v1

1,1,1

is shifted by a quarter of the time period relative real part,
since TW possesses the so-called spatio-temporal symme-
try γx

αγt
φ with φ = −2πα/(f3

1L) (here γt
φ denotes shift in

time by φ).
At R = 1935 a second frequency appears. The attrac-

tor is a torus with two main frequencies.
Runs with random initial conditions have revealed that

the system possesses another attractor S2, unrelated to
the sequence of attractors described above. It is a steady
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(a)

(b)

Fig. 17. Isolines of vz on the horizontal midplane z = 1
2

for
L = 4: R = 1000 (step 1), TW (a) and R = 1400 (step 5), P4

(b). Solid lines indicate positive values, dashed lines – negative
values. x – horizontal axis, y – vertical axis.

state with the symmetry group D4 of the periodicity
square. In the terminology of [32] this steady state is
“Large Squares”. The flow consists of cells of the period
L, where fluid is rising near boundaries and descending
at the centre (see Fig. 11b). Application of the symme-
try r yields a flow whose direction is reversed. S2 exists
for 951 ≤ R ≤ 1081, no attractors bifurcate from it for
smaller or larger R. Demircan and Seehafer (2002) also
observed it in computations for P = 6.8 and 3.5 ≤ L ≤ 5.

5.2 Magnetic field generation in linear and non-linear
regimes

The kinematic dynamo problem (5) has been considered
for all attractors, listed in Table 2, except for the trivial
steady state and rolls. We find that TW, P4 and all sub-
sequent attractors can act as kinematic dynamos, and the
remaining attractors do not generate magnetic field for
Pm ≤ 100.

The obtained critical Prandtl numbers P c
m are plotted

in Figure 19a. The values are larger compared to those for
L = 2

√
2 (cf. Figs. 6a and 19a). A possible reason is that

(a)

(b)

Fig. 18. Fourier coefficient v1
1,1,1 (vertical axis) as a function

of time (horizontal axis) for L = 4 and R = 1000: TW (a) and
P3 (b). Real part – solid lines, imaginary – dotted lines. For
P3 real part vanishes due to the imposed symmetry s2.

the energy of convective attractors is smaller for L = 4
(cf. Figs. 6b and 19b); the respective critical magnetic
Reynolds numbers Rc

m = P c
mE

1/2

k differ less. The local
maximum of P c

m is due to exchange of stability between
different magnetic modes.

Non-linear regimes have been investigated for R =
1000, Pm = 16; R = 1200, Pm = 20; R = 1500, Pm = 18;
R = 2000, Pm = 18 (initial conditions in simulations be-
ing, respectively, the TW, MTW2, P4 or Q2 and a small
seed magnetic field). The regimes are similar to those for
L = 2

√
2: Initially magnetic energy grows exponentially,

but in the saturated regime it remains smaller than kinetic
energy. Attractors are quasi-periodic with several main
frequencies, or chaotic (a typical temporal behaviour of
kinetic and magnetic energies is displayed in Fig. 20).

6 Conclusion

The convective system (without magnetic field) possesses
a rich variety of attractors. We have identified fifteen
types of convective flows, including steady states, trav-
elling waves, regimes involving several temporal frequen-
cies. The computations were performed for the Prandtl
number P = 1 (compressed gases used in recent exper-
iments often have P ≈ 1 [35]). Despite some simplifica-
tions of the considered system, i.e. stress-free horizontal
boundaries and imposed periodicity in horizontal direc-
tions, there are some common features with experimental
observations. Travelling waves, present for both consid-
ered values of L in computations, was observed by Cakmur
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(a)

(b)

Fig. 19. Critical magnetic Prandtl numbers P c
m (a) for the

onset of magnetic field generation by attractors of the system
(1), (2) and time averaged kinetic energy of the attractors Ek

(b) for L = 4 and 900 ≤ R ≤ 2000 . Horizontal axis: Rayleigh
number. Plots for attractors TW, MTW2 and C2 are shown
by solid lines, for P4 and Q2 by dashed lines.

(a)

(b)

Fig. 20. Kinetic (a) and magnetic (b) energy (vertical axis)
as functions of time (horizontal axis) for L = 4, R = 1200 and
Pm = 20.

et al. [36]. Coexistence of several types of attractors (as
in Fig. 13, bifurcation diagramm for L = 4) was also re-
ported in experiments (see references in [35]). Spiral-defect
chaos (complex spatio-temporal dynamics involving dif-
ferent kinds of patterns observed for R > 1.26Rc) may
be related to a heteroclinic connection, similar to the one
found for L = 4 and 786 ≤ R ≤ 812.

Out of fifteen types of convective attractors six can
act as kinematic dynamos. Magnetic field, if generated
kinematically, persists in non-linear regime.

The study has been performed for two different values
of the aspect ratio. For both employed values, if Rayleigh
number is large enough, the respective convective attrac-
tors can generate magnetic field. The property of a con-
vective attractor to be a kinematic dynamo is inherited
by attractors bifurcating from it – e.g. TW is a kinematic
dynamo, and so are MTW2 and MTW3. We observe a
non-monotonous dependence of the critical Pm on R. The
best magnetic field generators (the ones, where generation
starts at the smallest Pm) among convective attractors are
travelling waves MTW2 for R = 2600 (for L = 2

√
2) and

TW for R = 1000 (for L = 4). Magnetic field concentrates
near the horizontal boundaries. In all MHD simulations
reported here magnetic energy is much smaller than the
kinetic one, because computations have been carried out
for Pm not far from its critical value.

For both considered values of L, the largest Fourier
coefficients are those corresponding to rolls with the peri-
ods L and L/

√
2 (the ones aligned with a coordinate axis

or along diagonals of periodicity cells), indicating that
analytical investigation of the 1:

√
2 resonance in a sys-

tem with the D4 � T2 ×Z2 symmetry group is necessary
to understand convective bifurcations reported here. This
work is in progress. We intend to examine a general sys-
tem with this symmetry group and the particular system
obtained from (1), (2) by the center manifold reduction,
similarly to the study of bifurcations in the ABC forced
hydrodynamic system [37,38]. This investigation will re-
veal as well, which bifurcations can occur for other param-
eter values not considered in this paper. Mode interaction
is responsible for the heteroclinic connection observed for
R ∼ 815 (see Appendix). The nature of chaotic behaviour
for 786 ≤ R ≤ 812 apparently will be also clarified by this
investigation.

I am grateful to Profs S.Ya. Gertsenshtein and A. Soward,
to Drs A. Gilbert and V. Zheligovsky for discussions, and
to an anonymous referee for his stimulating remarks. Codes
of Zheligovsky (1993) were used for eigenvalue computations.
Part of this research was carried out during my visits to the
School of Mathematical Sciences, University of Exeter, UK, in
May–July 2002 and in January–April 2004. I am grateful to the
Royal Society for their financial support. Some numerical re-
sults were obtained using computational facilities provided by
the program “Simulations Interactives et Visualisation en As-
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Appendix: Heteroclinic network in a system
with the 1:

√
2 mode interaction

In this Appendix we consider the 1:
√

2 mode interaction to
show that structurally stable heteroclinic connection be-
tween solutions of the SS and LR types is possible. This
particular mode interaction is important, because the ra-
tio of periods of the first two modes becoming unstable
(rolls along the diagonal and along the edges of the peri-
odicity cell) is 1:

√
2. Such connection can be responsible

for the behaviour observed for L = 4, 813 ≤ R ≤ 815.5.
The notation of [32] is used. A solution of (1, 2) re-

stricted to the center manifold is represented as

h(x, y) = Re(Aeix + Beiy + Cei(x+y) + Dei(x−y)).

The symmetries of the system (see Sect. 3) transform the
complex amplitudes A, B, C and D in the following way:

s1 : (A, B, C, D) → (B, Ā, D̄, C),

s4 : (A, B, C, D) → (A, B̄, D, C),

s5 : (A, B, C, D) → (Ā, B, D̄, C̄),

γx
α : (A, B, C, D) → (eiαA, B, eiαC, eiαD),

γy
α : (A, B, C, D) → (A, eiαB, eiαC, e−iαD),
r : (A, B, C, D) → (−A,−B,−C,−D).

Amplitude equations, invariant under the action of the
symmetry group of the system, truncated at cubic order
have the form

Ȧ = µ1A − A(λ1|A|2 + λ2|B|2
+ λ3(|C|2 + |D|2)) − ν1ĀCD,

Ḃ = µ1B − B(λ1|B|2 + λ2|A|2
+ λ3(|C|2 + |D|2)) − ν1B̄CD̄,

Ċ = µ2C − C(λ4|C|2 + λ5|D|2
+ λ6(|A|2 + |B|2)) − ν2(B2D + A2D̄),

Ḋ = µ2D − D(λ4|D|2 + λ5|C|2
+ λ6(|A|2 + |B|2)) − ν2(B̄2C + A2C̄). (10)

Unlike in [32], the quadratic terms are absent due to the
Boussinesq symmetry r.

The subspace (x1, 0, x2, x2) is a fixed-point subspace
for the group generated by s4, s5 and γx

L/2r. The subspace
contains the LR solutions

(A, B, C, D) = ±(µ1/λ1)1/2(1, 0, 0, 0)

and the SS solutions

(A, B, C, D) = ±(µ2/(λ4 + λ5))1/2(0, 0, 1, 1)

(assuming µ1/λ1 > 0 and µ2/(λ4 + λ5) > 0). The eigen-
values controlling stability of LR are −2µ1 and µ2 −

(λ6 + ν2)µ1/λ1 associated with the eigenspaces (1, 0, 0, 0)
and (0, 0, 1, 1), respectively, and the eigenvalues control-
ling stability of SS are −2µ2, µ1 − (2λ3 + ν1)µ2/(λ4 + λ5)
associated with the eigenspaces (0, 0, 1, 1) and (1, 0, 0, 0).
The bifurcations to both large rolls and small squares
are supercritical, therefore µ1 > 0 and µ2 > 0. If
µ2−(λ6+ν2)µ1/λ1 < 0 and µ1−(2λ3+ν1)µ2/(λ4+λ5) > 0,
LR is stable in this subspace, SS is unstable, and a connec-
tion from SS to LR is possible. Since this is a fixed-point
subspace for a subgroup of of D4 � T2 ×Z2, according to
Proposition 2.5 in [39] the connection is robust.

Similarly, the subspace (x1, 0, ix2, ix2) is a fixed-point
subspace for the group generated by s4, γy

L/2s5 and γx
L/2r.

It contains the same LR solutions ±(µ1/λ1)1/2(1, 0, 0, 0)
and the SS solutions ±i(µ2/(λ4 + λ5))1/2(0, 0, 1, 1). The
eigenvalues controlling stability of LR are −2µ1 and µ2 −
(λ6 − ν2)µ1/λ1, with the associated eigenspaces (1, 0, 0, 0)
and (0, 0, i, i), respectively, and the eigenvalues control-
ling stability of SS are −2µ2, µ1 − (2λ3 − ν1)µ2/(λ4 + λ5)
associated with eigenspaces (0, 0, i, i) and (1, 0, 0, 0). If
µ2−(λ6−ν2)µ1/λ1 > 0 and µ1−(2λ3−ν1)µ2/(λ4+λ5) < 0,
a robust connection from LR to SS is possible.

These connections underline the switching between the
SS and LR type flows observed in Figure 16. However, ap-
plication of the D4 � T2 × Z2 symmetries reveals that
multiple heteroclinic trajectories approach and leave each
of the SS and LR types steady states. We do not address
here the question why the trajectory chooses the particu-
lar path of the network.

Heteroclinic connections in (10), described above, re-
side in the invariant subspace (A, 0, C, C). Dynamical sys-
tem (10) restricted on this invariant subspace is identical
to the one, for which the O(2)×Z2 mode interaction was
investigated in [40,41]. Conditions for existence of struc-
turally stable heteroclinic connections in the restricted
system were found in these papers. The cycle (existing
for appropriate values of the coefficients) connects steady
states of the types (A, 0, 0, 0) and (0, 0, C, C), similarly to
the ones found above. However, heteroclinic cycles found
here and in [40,41] are different. In [40,41] it involves
8 steady states: (A, 0, 0, 0) → (0, 0, C, C) → (iA, 0, 0, 0)
→ (0, 0, iC, iC) → (−A, 0, 0, 0) → (0, 0,−C,−C) →
(−iA, 0, 0, 0) → (0, 0,−iC,−iC) → (A, 0, 0, 0), while we
observe in Figure 16 connection between 6 steady states:
(A, 0, 0, 0) → (0, 0, C, C) → (iA, 0, 0, 0) → (0, 0, iC̄, iC̄)
→ (−A, 0, 0, 0) → (0, 0, C, C) → (−iA, 0, 0, 0) →
(0, 0, iC̄, iC̄) → (A, 0, 0, 0).
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